+91 90990 59947
+91 98980 91340

Where We Started

While the notion that music has healing powers over mind and body has ancient origins, its formal use as therapy emerged in the middle of the 20th century. At that time, music therapists thought of their work as rooted in social science: The art had value as therapy because it performed a variety of social and emotional roles in a society’s culture. In this early therapy, music was used, as it had been through the ages, to foster emotional expression and support; help build personal relationships; create and facilitate positive group behaviours; represent symbolically beliefs and ideas; and support other forms of learning. In the clinic, patients listened to music or played it together with the therapists or other patients to build relationships, promote well-being, express feelings, and interact socially.

Because early music therapy was built upon these laudable and important but therapeutically narrow concepts, many in health care, including insurers, viewed it as merely an accessory to good therapy. For decades it was difficult to collect scientific evidence that music therapy was working because no one knew what the direct effects of music on the brain were. Now, however, the approaches that are central to brain rehabilitation focus on disease-specific therapeutic effects, demonstrated by rigorous research.

The role of music in therapy has gone through some dramatic shifts in the past 15 years, driven by new insights from research into music and brain function. These shifts have not been reflected in public awareness, though, or even among some professionals and even the field of education.

Biomedical researchers have found that music is a highly structured auditory language involving complex perception, cognition, and motor control in the brain, and thus it can effectively be used to retrain and re-educate the injured brain. Therapists and physicians use music now in rehabilitation in ways that are not only backed up by clinical research findings but also supported by an understanding of some of the mechanisms of music and brain function.

Neuroscience Steps Up

During the past two decades, new brain imaging and electrical recording techniques have combined to reshape our view of music in therapy and education. These techniques (functional magnetic resonance imaging, positron-emission tomography, electroencephalography, and magnetoencephalography) allowed us for the first time to watch the living human brain while people were performing complex cognitive and motor tasks. Now it was possible to conduct brain studies of perception and cognition in the arts.

From the beginning of imaging research, music was part of the investigation. Scientists used it as a model to study how the brain processes verbal versus nonverbal communication, how it processes complex time information, and how a musician’s brain enables the advanced and complicated motor skills necessary to perform a musical work.

After years of such research, two findings stand out as particularly important for using music in rehabilitation. First, the brain areas activated by music are not unique to music; the networks that process music also process other functions. Second, music learning changes the brain.

The brain areas involved in music are also active in processing language, auditory perception, attention, memory, executive control, and motor control. Music efficiently accesses and activates these systems and can drive complex patterns of interaction among them. For example, the same area near the front of the brain is activated whether a person is processing a problem in the syntax of a sentence or in a musical piece, such as a wrong note in a melody. This region, called Broca’s area after the French neurologist from the 19th century who described it, is also important in processing the sequencing of physical movement and in tracking musical rhythms, and it is critical for converting thought into spoken words. Scientists speculate, therefore, that Broca’s area supports the appropriate timing, sequencing, and knowledge of rules that are common and essential to music, speech, and movement.

A key example of the second finding, that music listening changes the brain, is research clearly showing that through such learning, auditory and motor areas in the brain grow larger and interact more efficiently. After novice students have just a few weeks of training, for example, the areas in their brain serving hand control become larger and more connected. It quickly became clear that music can drive plasticity in the human brain, shaping it through training and learning.

Researchers in the field of neurologic rehabilitation have described parallel results. They found that the brain changes in structure and function as a result of listening, training, and environmental influences. Exposure and experience will create new and more efficient connections between neurons in the brain in a sort of “rewiring” process.

This discovery fundamentally changed how therapists developed new interventions. Passive stimulation and facilitation were no longer considered effective; active learning and training promised to be the best strategy to help rewire the injured brain and recover as much ability as possible. Further clinical research has strongly confirmed this approach.

By combining these developments—brain imaging, insight into plasticity, and finding that musical and non-musical functions share systems—therapists finally could build a powerful, testable hypothesis for using music in rehabilitation: Music can drive general reeducation of cognitive, motor, and speech and language functions via shared brain systems and plasticity. Once used only as a supplementary stimulation to facilitate treatment, music could now be investigated as a potential element of active learning and training.